Embedbase
Embedbase is a single API to access both LLMs and a VectorDB*
Key features
- Generate: use
.generateText()
to use 5+ LLMs - Semantic Search: use
.add()
to create a list of semantically searchable information and.search()
to run semantic queries
Quickstart
Here's a small example to do a simple Q&A search app:
import { createClient } from 'embedbase-js'
// initialize client
const embedbase = createClient(
'https://api.embedbase.xyz',
'<grab me here https://app.embedbase.xyz/>'
)
const question =
'im looking for a nice pant that is comfortable and i can both use for work and for climbing'
// search for information in a pre-defined dataset and returns the most relevant data
const searchResults = await embedbase.dataset('product-ads').search(question)
// transform the results into a string so they can be easily used inside a prompt
const stringifiedSearchResults = searchResults
.map(result => result.data)
.join('')
const answer = await embedbase
.useModel('openai/gpt-3.5-turbo-16k') // or google/bison
.generateText(`${stringifiedSearchResults} ${question}`)
console.log(answer) // 'I suggest considering harem pants for your needs. Harem pants are known for their ...'
Checkout the .add()
documentation to see how to populate the dataset.
Installation
npm i embedbase-js
Learn more
Section | Description |
---|---|
SDKs documentation (opens in a new tab) | The Embedbase JS and Python SDKs |
Examples (opens in a new tab) | Try some examples |